# Maxwell Boltzmann distribution | Thermodynamics | Physics | Khan Academy

– [Voiceover] So let’s think a little bit about the Maxwell-Boltzmann distribution. And this right over here, this is a picture of James Clerk Maxwell. And I really like this picture, it’s with his wife Katherine Maxwell and I guess this is their dog. And James Maxwell, he is a titan of physics famous for Maxwell’s equations. He also did some of the foundational work on color photography and he was involved in thinking about, “Well, what’s the distribution of speeds of air particles of idealized gas particles?” And this gentleman over here, this is Ludwig Boltzmann. And he’s considered the father or one of the founding fathers of statistical mechanics. And together, through the Maxwell-Boltzman distribution they didn’t collaborate, but they independently came to the same distribution. They were able to describe, “Well, what’s the distribution of the speeds of air particles?” So let’s back up a little bit or let’s just do a little bit of a thought experiment. So let’s say that I have a container here. Let’s say that I have a container here. And let’s say it has air. And air is actually made up mostly of nitrogen. Let’s just say it just has only nitrogen in it just to simplify things. So let me just draw some nitrogen molecules in there. And let’s say that I have a thermometer. I put a thermometer in there. And the thermometer reads a temperature of 300 Kelvin. What does this temperature of 300 Kelvin mean? Well, in our everyday life, we have kind of a visceral sense of temperature. Hey, I don’t wanna touch something that’s hot. It’s going to burn me. Or that cold thing, it’s gonna make me shiver. And that’s how our brain processes this thing called temperature. But what’s actually going on at a molecular scale? Well, temperature, one way to think about temperature, this would be a very accurate way to think about temperature is that tempera- I’m spelling it wrong. Temperature is proportional to average kinetic energy of the molecules in that system. So let me write it this way. Temperature is proportional to average kinetic energy. Average kinetic energy in the system. I’ll just write average kinetic energy. So let’s make that a little bit more concrete. So let’s say that I have two containers. So it’s one container. Whoops. And two containers right over here. And let’s say they have the same number of molecules of nitrogen gas And I’m just gonna draw 10 here. This obviously is not realistic you’d have many, many more molecules. One, two, three, four, five, six, seven, eight, nine, ten. One, two, three, four, five, six, seven, eight, nine, ten. And let’s say we know that the temperature here is 300 Kelvin. So the temperature of this system is 300 Kelvin. And the temperature of this system is 200 Kelvin. So if I wanted to visualize what these molecules are doing they’re all moving around, they’re bumping they don’t all move together in unison. The average kinetic energy of the molecules in this system is going to be higher. And so maybe you have this molecule is moving in that direction. So that’s its velocity. This one has this velocity. This one’s going there. This one might not be moving much at all. This one might be going really fast that way. This one might be going super fast that way. This is doing that. This is doing that. This is doing that. So if you were to now compare it to this system this system, you could still have a molecule that is going really fast. Maybe this molecule is going faster than any of the molecules over here. But on average, the molecules here have a lower kinetic energy. So this one maybe is doing this. I’m going to see if I can draw… On average, they’re going to have a lower kinetic energy. That doesn’t mean all of these molecules are necessarily slower than all of these molecules or have lower kinetic energy than all of these molecules. But on average they’re going to have less kinetic energy. And we can actually draw a distribution. And this distribution, that is the Maxwell-Boltzmann distribution. So if we… Let me draw a little coordinate plane here. So let me draw a coordinate plane. So, if on this axis, I were to put speed. If I were to put speed. And on this axis, I would put number of molecules. Number of molecules. Right over here. For this system, the system that is at 300 Kelvin the distribution might look like this. So it might look the distribution… Let me do this in a new color. So, the distribution this is gonna be all of the molecules. The distribution might look like this. Might look like this. And this would actually be the Maxwell-Boltzmann distribution for this system For system, let’s call this system A. System A, right over here. And this system, that has a lower temperature which means it also has a lower kinetic energy. The distribution of its particles… So the most likely, the most probable… You’re going to have the highest number of molecules at a slower speed. Let’s say you’re gonna have it at this speed right over here. So its distribution might look something like this. So it might look something like that. Now why is this one… It might make sense to you that okay, the most probable the speed at which I have the most molecules I get that that’s going to be lower than the speed at which I have the most molecules in system A because I have, because on average these things have less kinetic energy. They’re going to have less speed. But why is this peak higher? Well, you gotta remember we’re talking about the same number of molecules. So if we have the same number of molecules that means that the areas under these curves need to be the same. So if this one is narrower, it’s going to be taller. And if I were gonna, if I were to somehow raise the temperature of this system even more. Let’s say I create a third system or I get this or let’s say I were to heat it up to 400 Kelvin. Well then my distribution would look something like this. So this is if I heated it up. Heated up. And so this is all the Maxwell-Boltzmann distribution is. I’m not giving you the more involved, hairy equation for it but really the idea of what it is. It’s a pretty neat idea. And actually when you actually think about the actual speeds of some of these particles, even the air around you I’m gonna say, “Oh, it looks pretty stationary to me.” But it turns out in the air around you is mostly nitrogen. That the most probable speed of if you picked a random nitrogen molecule around you right now. So the most probable speed. I’m gonna write this down ’cause this is pretty mindblowing. Most probable speed at room temperature. Probable speed of N2 at room temperature. Room temperature. So let’s say this that this was the Maxwell-Boltzmann distribution for nitrogen at room temperature. Let’s say that that’s, let’s say we make we call room temperature 300 Kelvin. This most probable speed right over here the one where we have the most molecules the one where we’re gonna have the most molecules at that speed. In fact, guess what that is going to be before I tell you ’cause it’s actually mind boggling. Well, it turns out that it is approximately 400, 400 and actually at 300 Kelvin it’s gonna be 422 meters per second. 422 meters per second. Imagine something traveling 422 meters in a second. And if you’re used to thinking in terms of miles per hour this is approximately 944 miles per hour. So right now, around you you have, actually the most probable, the highest number of the nitrogen molecules around you are traveling at roughly this speed and they’re bumping into you. That’s actually what’s giving you air pressure. And not just that speed, there are actually ones that are travelling even faster than that. Even faster than 422 meters per second. Even faster. There’s particles around you traveling faster than a thousand miles per hour and they are bumping into your body as we speak. And you might say, “Well, why doesn’t that hurt?” Well, that gives you a sense of how small the mass of a nitrogen molecule is, that it can bump into you at a thousand miles per hour and you really don’t feel it. It feels just like the ambient air pressure. Now, when you first look at this, you’re like wait, 422 meters per second? That’s faster than the speed of sound. The speed of sound is around 340 meters per second. Well, how can this be? Well, just think about it. Sound is transmitted through the air through collisions of particles. So the particles themselves have to be moving or at least some of them, have to be moving faster than the speed of sound. So, not all of the things around you are moving this fast and they’re moving in all different directions. Some of them might not be moving much at all. But some of them are moving quite incredibly fast. So, I don’t know, I find that a little bit mindblowing.

## 58 thoughts on “Maxwell Boltzmann distribution | Thermodynamics | Physics | Khan Academy”

1. David says:

This has always been my favourite, the Maxwell-Boltzmann distribution, amazing!

2. spyro228 says:

what a blazing fast speed

3. Hamza Amdii says:

thanks 😀

4. Joelle Oon says:

how did u get the speed of 422m/s? is there a certain calculation or was it a random value?

5. stokey99 says:

how is the left axis number of molecules,, and if it is, how can the number of molecules just change in a system?? i don't understand?

6. Bakamatsuu says:

your voice is ear gasm… i love it, DAT DEEP BASS

7. Far Man says:

can you please explain SMITH CHART ( Electrical engineering)?

8. Ahmed Mustafa says:

Can you do one of the actual calculus and use of the equation instead of just an overview? Thanks! Great work!

9. Malek emerald says:

10. Sigourney says:

11. cute_lil_critter says:

aye 420

12. LEO Art says:

13. Emir Selman says:

Why is the most probable speed the tallest point on the curve – shouldn't it be the highest speed instead?

14. jiashan1909 says:

Thank you 🙂

15. EFTEKHAR AHMED says:

please make a video series on maxwell boltzmanns distribution function derivation.

16. Tony Suffolk says:

Great explanation for laymen like me. Thanks for the upload.

Thank u a lot
😊💐💐💐

18. Bishal Thapa says:

Is it appropiate to say kinetic energy is proportional to average speed of the molecule or rms speed of the molecule confuz??

19. Henrik Wong says:

What is this blackboard software?

20. Meven Steeve says:

I can feel air molecules making love to me 😀

21. Not_Mak BugG says:

awesome….👌👌👌👌👌

22. Rynhardt says:

Boggled😎

23. Moiiike M says:

"Why doesn't that hurt?" lmao I love Khan Academy

24. Govind raju says:

Super

25. Lydia Jasmine says:

Me -searching the whole world for a logical explanation and finds one at last …. thanks so much

26. Saif Shahid says:

U r Amazing….

27. Sandipan Majhi says:

moltzmann distribution

28. Canys24 Bb says:

Why Maxwell Boltzmann distribution fell in quantum physic?

29. Aliya Jamal says:

great

30. MRITUNJAY KUMAR says:

Hey Sal, please make a course on quantum mechanics

31. ふらん says:

Bless you so much!! I watched several different videos on this and didn't understand it until I got to you.

32. mohammed jeylan says:

wow best

33. Jasir Mukhtar says:

U make everything look easy.Thank you

34. Tristan Möller says:

I love this thank you so much

35. Tristan Möller says:

Now how did we calculate the most probable speed?

36. kidamaroo says:

The speed thing that he mentions sort of reminds me of the speed on sound. Is there a relationship between the Boltzmann Maxwell distribution and the speed of sound?

37. Jack Stuart says:

9:21 That voice break

38. Sunil Rathore says:

Thanks a lot sir

39. Jaraxel says:

Great, you made it easy to understand. Thanks!

40. Himanshu Thakur says:

You are a great legend brooooo

41. yajat singla says:

Chemistry sucks I love biology

42. Asif A says:

lol u were so excited

43. Usman says:

Perfect!
Loved it!

44. Mary Lou says:

you sound like dwayne johnson so sexy.

45. Mary Lou says:

what if I'm in love with you

46. Khaled Osama says:

very boring and long

47. shariful islam says:

I highly appreciate for your nice explanation. Thanks a lot !

48. Jobin Sebastian Vellimon says:

I think in the graph x-axis is number of molecules n on Y-axis is speed, isn't it?

Thanks 👍👍

50. Abeer Abdalle says:

very well said

51. Buğra Kaan says:

I wish they would teach us like this in school. Thank you khan academy

52. Mid night says:

Wow such a great explanation

53. ants says:

slow… low energy.

54. Peter Dsouza says:

What about the temperature of a vacuum system? How do we set the framework to analyze that? I am sure we will then be talking about even smaller particles like the photon. Do we have a video covering that?

55. Momo chan says:

This guy is more mind blowing😂. Thanks, man. You're a life saver

56. solo gouda says:

God bless you

57. manjari tiwari says:

I tried catching a nitrogen right now…xd

58. RemunJ66 says:

That constant noise in my ear nowadays must mean something seen in this context don't you think? 😉